MATH 2028 Honours Advanced Calculus II 2024-25 Term 1 Problem Set 2

due on Oct 4, 2024 (Friday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through CUHK Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Problems to hand in

- 1. Prove that if $A \subset \mathbb{R}^n$ is compact ¹ and has measure zero, then A has content zero.
- 2. Define the volume of a subset $\Omega \subset \mathbb{R}^n$ by $\operatorname{Vol}(\Omega) = \int_{\Omega} 1 \, dV$.
 - (a) Let $A \subset \mathbb{R}^n$ be a content zero subset. Prove that A must be bounded. Moreover, show that ∂A has measure zero and $\operatorname{Vol}(A) = 0$.
 - (b) Let $B \subset \mathbb{R}^n$ be a bounded subset of measure zero. Suppose ∂B has measure zero. Prove that $\operatorname{Vol}(B) = 0$.
- 3. Evaluate the following integrals:
 - (a) $\int_{R} \frac{x}{x^2+y} \, dV$ where $R = [0,1] \times [1,3]$
 - (b) $\int_0^1 \int_{x^2}^x \frac{x}{1+y^2} \, dy \, dx$

(c)
$$\int_0^1 \int_{\sqrt{y}}^1 e^{y/x} dx dy$$

- 4. Let $\Omega \subset \mathbb{R}^3$ be the portion of the cube $[0,1] \times [0,1] \times [0,1]$ lying above the plane y + z = 1 and below the plane x + y + z = 2. Evaluate the integral $\int_{\Omega} x \, dV$.
- 5. Let $f: R = [0,1] \times [0,1] \to \mathbb{R}$ be the function defined by

$$f(x,y) = \begin{cases} 1 & \text{if } y \in \mathbb{Q}, \\ 2x & \text{if } y \notin \mathbb{Q}. \end{cases}$$

- (a) Prove that f is NOT integrable on R.
- (b) Show that each iterated integral $\int_0^1 \int_0^1 f(x, y) \, dx \, dy$ and $\int_0^1 \overline{f}_0^1 f(x, y) \, dy \, dx$ exist and compute their values.

Suggested Exercises

- 1. (a) Show that the subset $\mathbb{R}^{n-1} \times \{0\} \subset \mathbb{R}^n$ has measure zero.
 - (b) Show that $\mathbb{Q}^c \cap [0,1]$ does not have measure zero in \mathbb{R} .

¹A subset A is compact if any open cover of A has a finite subcover. The Heine-Borel Theorem says that a subset in \mathbb{R}^n is compact if and only if it is closed and bounded.

2. Let $f: \Omega \to \mathbb{R}$ be a bounded continuous function defined on a bounded subset $\Omega \subset \mathbb{R}^n$ whose boundary $\partial\Omega$ has measure zero. Suppose Ω is path-connected, i.e. for any $p, q \in \Omega$, there exists a continuous path $\gamma(t): [0,1] \to \Omega$ such that $\gamma(0) = p$ and $\gamma(1) = q$. Prove that there exists some $x_0 \in \Omega$ such that

$$\int_{\Omega} f \, dV = f(x_0) \operatorname{Vol}(\Omega).$$

- 3. Find the volume of the region in \mathbb{R}^3 bounded by the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
- 4. Find the volume of the region in \mathbb{R}^3 bounded below by the *xy*-plane, above by z = y, and on the sides by $y = 4 x^2$.
- 5. Let $f: \Omega \to \mathbb{R}$ be a C^2 function ² on an open subset $\Omega \subset \mathbb{R}^2$. Use Fubini's Theorem to prove that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ everywhere in Ω .
- 6. Let $f: R = [a, b] \times [c, d] \to \mathbb{R}$ be a continuous function. Define another function $F: R \to \mathbb{R}$ such that

$$F(x,y) := \int_{[a,x] \times [c,y]} f \, dV.$$

Compute $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ in the interior of R.

7. Let $f: R = [a, b] \times [c, d] \to \mathbb{R}$ be a continuous function such that $\frac{\partial f}{\partial y}$ is continuous on R. Define $G: [c, d] \to \mathbb{R}$ such that

$$G(y) := \int_a^b f(x, y) \, dx.$$

- (a) Show that G is continuous on [c, d].
- (b) Prove that G is differentiable on (c, d) and $G'(y) = \int_a^b \frac{\partial f}{\partial y}(x, y) dx$.

Challenging Exercises

1. The following exercise establishes the theorem that a bounded function $f : R \to \mathbb{R}$ is integrable if and only if f is continuous on R except on a set of measure zero. Let $f : R \to \mathbb{R}$ be a bounded function. For each $p \in R$ and $\delta > 0$, we define the *oscillation of* f *at* p as

$$o(f,p) = \lim_{\delta \to 0^+} \left(\sup_{x \in B_{\delta}(p) \cap R} f(x) - \inf_{x \in B_{\delta}(p) \cap R} f(x) \right).$$

- (a) Show that o(f, p) is well-defined and non-negative. Prove that f is continuous at p if and only if o(f, p) = 0.
- (b) For any $\epsilon > 0$, let $D_{\epsilon} := \{p \in R : o(f, p) \ge \epsilon\}$. Show that D_{ϵ} is a closed subset and the set of discontinuities D of f is given as $D = \bigcup_{n=1}^{\infty} D_{1/n}$.
- (c) Suppose f is integrable on R. Prove that $D_{1/n}$ has content zero for any $n \in \mathbb{N}$. Hence, show that D has measure zero.
- (d) Suppose D has measure zero, prove that f is integrable on R.

²Recall that a function f is C^k if all the partial derivatives up to order k exist and are continuous.